
Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

1

Legion: An extensible lightweight web framework for easy
BOINC task submission, monitoring and result retrieval

using web services

a,b,cGenghis Ríos, a,bPablo Fonseca, aOscar Díaz
a,b,cPontificia Universidad Católica del Perú, Dirección de Informática Académica, Perú

grios@pucp.edu.pe
a,bPontificia Universidad Católica del Perú, Dirección de Informática Académica

pfonseca@pucp.edu.pe
aPontificia Universidad Católica del Perú, Dirección de Informática Académica

diaz.oa@pucp.edu.pe

Abstract. Nowadays, researchers both from industry and academia need to perform
computationally intensive calculations as part of their activities. If an institution decides to
deploy Berkeley Open Infrastructure for Network Computing (BOINC) Desktop Grid in order
to support these needs, the inherent complexity of task submission might represent a barrier to
end users. To address this we present Legion, a lightweight framework for generating web
interfaces for BOINC that successfully reduces the administration time and hides the
complexity to end users. We also present how Legion Framework can be adapted to work with
other Grid Management Systems.

Keywords: Legion, BOINC, Framework, Grid Computing, High Throughput Computing,
PUCP.

1. Introduction

Today, research centers around the world require running intensive calculations for solving
complex problems in many areas such as climate prediction, high energy physics, data mining,
protein folding, validation of statistical models, etc. More often the computing power
requirements to perform these tasks are beyond the capabilities of a personal computer. In order
to bypass this restriction, it is mandatory to count upon a large-scale infrastructure. Berkeley
Open Infrastructure for Network Computing (BOINC) Desktop Grid should be considered as a
feasible alternative “supercomputer”, especially in a constrained-resource scenario or where the
required computational power exceeds the limit of the gamma of affordable supercomputers.
Grid management systems such as BOINC [1] are geared to effectively handle task queuing,

task distribution in nodes, execution and retrieval of task results; on the other side they are not
easy to use. The latter particularly represents a barrier and limits a wider adoption because
researchers spend time on the particularities of the grid system instead of working on their core
research. The difficulty mainly lies in the complex procedures required to send calculations and
retrieve results. Therefore, a framework that successfully hides the complexity of the grid,



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

2

exposes utilities for managing tasks and allows to be accessed from any location is highly
desirable.
At Pontificia Universidad Católica del Perú (PUCP), BOINC is being used since 2008 to

support intensive computing requirements of in-house researchers. This is done by taking
advantage of unused computing power of the computer commons without disturbing their users.
This scheme enables our institution to require less power than with dedicated hardware and
thus being a greener approach.
Through this paper we present Legion, a framework that reduces the adoption barrier by

generating web interfaces that enable web access to BOINC. Legion Framework is modular and
can also be adapted to other Grid Management Systems that work under the master-worker
paradigm.
The rest of the paper is organized as follows: Section 2 presents a comparison with similar

work, Section 3 explains how the execution in the grid is supported under the master-worker
paradigm; Sections 4 and 5 show the overall architecture of the framework by analyzing the
two main components Legion Web Interface and Legion Web Services. Section 6 shows how
the integration with other Grid Management Systems is managed. Finally, Section 7 addresses
the future work.

2. Related Work

The first version of the Legion System [2] is the direct predecessor of the current framework, it
tried to abstract the complexity of the Grid by using the same approach of providing
customized web interfaces for task submission, monitoring and result retrieval. However, the
work required to add a new interface was complex. In addition, the scheme was not extensible
and thus could only work with BOINC.
Another project with similar goals as the one presented in this paper is RBoinc [3], a

scientific interface that extends the functionality of BOINC and allows remotely sending tasks
and monitoring their progress. This project uses the WebDAV protocol for transferring binary
files. The complete system consists of two components: a command-line interface and a server
(both developed in Perl).
Virtual Community Grid [4] is an initiative to provide web access to the resources of a Grid

based on Globus Toolkit. The project aims to provide access to distributed computing resources
for the national research system in Brazil.
Another project which might help in order to build a Grid Infrastructure with BOINC is

Jarifa [5]. It allows the grid-admin to centralize client (execution nodes) management and get
statistics of use. However, these features don’t collide with Legion Framework’s ones, and thus
both should be considered as complementary tools.

3. Execution on the Grid based on tasks and projects

In order to benefit from Legion, a problem must allow to be solved under the master-worker
paradigm. This means that a task should be able to be divided in parts that are independent.
Therefore, it would be possible to abstract the concept of task as a collection of independent
and smaller computing units.
The tasks go through four stages: 1) creation of computational units, 2) queuing in the Grid

Management System, 3) execution at the grid nodes and 4) packaging of the partial results after



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

3

the task queue finishes its processing. This way it is possible to obtain satisfactory results for
very long tasks by dividing them into many computing units.
The concept of a project in Legion Framework encompasses both: a group of users and the

application that they run on the Grid. This application must be batch-kind and capable of
performing the calculation of any computing unit, so the only variation between units should
consist of parameters and input files.
Every user of a Legion project is assigned a role which could be either creator or subscriber.

The first will be allowed to create tasks, delete them, download their results and subscribe other
users to the created tasks, while the second will just be allowed to download the results of the
tasks.
The framework also supports the management of credits to quantify the use of computational

resources proportional to the execution time of submitted tasks. These credits are granted by the
institution and represent a limited resource as task submission is subject to the availability of
the latter. However, this functionality can be disabled in environments where it is not important
to be ruled by a credit economy.

4. Architecture

The main goal while designing Legion was to specify a set of maintainable components that
interact with each other and that could be replaced by convenience. For this reason, we chose to
use a service-oriented architecture where components are subscribed to a “contract”. This
means that a single specification of the methods is given, which would make possible the
development of new components that can fit without problems.
Legion has two main components as can be seen in Figure 1. Legion Web Services (LWS) is

the layer that is inserted on top of the Grid Management System (in this case BOINC) and that
can manage it completely, and Legion Web Interface (LWI), a web application that can
generate and host the web interfaces that provide remote access to the grid resources.

Figure 1. Architecture of Legion Framework

4.1. Legion Web Services (LWS)
LWS is an abstract layer because it represents a specification and not a particular
implementation. A list of methods that must be exposed by a web service is given. With the
implementation of these methods on top of a Grid Management System, the consumer
application should be able to completely manage the grid. In a following section the customized
implementation for BOINC is presented.
Sometimes the concept of task is not implemented in a Grid Management Systems, so it is

up to LWS to implement it. The methods LWS must expose are:



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

4

Task_Inf: Allows retrieving the information of a task.
Task_Progress: Allows retrieving the progress of a task.
Task_Cancel: Allows canceling a task.
Task_Result: Allows retrieving the result of a task.
Task_List: Allows listing running tasks.
Task_Create: Allows creating a task. A configuration file (config.xml) is a required

parameter of this method. This file should indicate the input filenames, result filenames, the
command line to run the executable files and specification of loops for the generation of
computing units. An example of this file is shown on Figure 4.

User_added: Allows adding a user.
User_Validate: Allows validating user’s credentials.
The implementation must support the SOAP with Attachments (SwA) standard [6], since the

transfer of binary files is mandatory.

Figure 2. Example form XML representation entered by administrator

4.2. Legion Web Interface (LWI)
This layer was developed to ease the access to the grid for researchers through the generation of
web interfaces. These interfaces include: 1) a custom task submission form per project, 2) a
monitoring page that shows the list of submitted tasks with their progress, and 3) tools to share
the tasks between users of the same group.
The interfaces are generated within the same application through a series of guided steps

commonly known as “wizard”. This task, done by the administrator, is easier than developing a



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

5

custom interface for each project. The steps include a graphical form editor for the custom task
submission page as an alternative to entering the XML form specification directly.
When the end user opens the task submission page for a project, the xml representation of

the form, either generated by the graphical form editor or entered directly, is rendered to
display the HTML components which will let the user to specify the parameters and input files
for a custom task. Figure 2 shows an example for the XML representation of the rendered form
for task submission shown in Figure 3.

Figure 3. Example of rendered task submission form for researchers in LWI.

Another important step required by the wizard is entering a “config.xml” template; an
example is shown in Figure 4. This file is required by LWS in order to break down the task in
many smaller computing units and must be conformant to “config.xml” specification when
interpreted. This template is entered directly by the system administrator at project creation
stage and interpreted after each task submission. The interpreter supports the replacement of



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

6

Form and Project variables and the interpretation of simple mathematical expressions with
these variables.
The example shown on Figures 2, 3, 4 and 6 belong to a trivial distributed numerical

integration project. Lower and upper bounds are specified with the function to integrate. The
interval is broken down into smaller intervals with a width equal to the step parameter. The
computing units are created by LWS as specified by the config.xml which is interpreted after
task submission. The total result of the integration process is given by the sum of partial results.

Figure 4. Example config.xml template.

LWI was developed using the Java programming language. The reason for choosing the
latter has to do with the robustness of the platform. The inner structure is based on the MVC
pattern (as shown in the Figure 5) in order to produce a maintainable product. The business
logic is encapsulated in the “Services” component. The “DAO” component and “Web Service
Consumer” provide the data access layer to LWI. The MySQL database is accessed with the
help of the MyBatis ORM framework. Apache Axis 2 [7], a widely adopted Web Service
library for Java is used to interact with the LWS layer via the SwA standard.
The client-side Form Editor was developed using the Google Web Toolkit (used for

compiling a subset of Java into Javascript code) because of the useful widgets available and the
ease provided by the object oriented programming.



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

7

Figure 5. Inner components of LWI.

Figure 6. Researcher’s task monitoring page

5. Legion Web Services for BOINC (LWSB)



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

8

5.1. BOINC
BOINC is a platform for distributed computing using public resources [8]. It consists of a
central server that manages the distribution of tasks between the clients on multiple platforms
such as Windows, Linux, Mac OS X, etc. It allows operating geographically distributed
infrastructures that can achieve a large scale computing power based on the paradigm of
computational resources volunteering.
Projects like SETI@home, Predictor@home and Folding@home benefit from BOINC

because a “supercomputer” is not enough to handle their computational requirements. Other
applications for BOINC include intra-organizational Grids for universities and companies such
as supercomputing virtual campus [9].
The workflow in BOINC is as follows: First, the creation of work units can be done either

by a custom application with the help of C++ libraries or directly by the default "create_work"
application. After creation, the scheduler will assign work units to BOINC clients for execution.
After a work unit is finished, the results are sent back to the server and go through a validation
stage if needed (in the case that replicas are being used). Then, the assimilation of work units is
performed for general-purpose results post-processing e.g. if results need to be concatenated
with other files. The stage of validation and assimilation [10] is done through two programs
that must be implemented using either the libraries available in C and Python, or via the
"Generic Assimilator Framework" given by BOINC.
Additionally, it is possible to monitor the progress of work units by using the BOINC project

web interface for "Project Management” or the C/Python libraries that are provided or by
making direct queries to the MySQL BOINC project database.

Figure 7. BOINC Architecture

5.2. Development of LWSB
In order to allow Legion Framework to work with BOINC, a custom LWS component was
developed. The main purpose of LSWB is to provide access to the resources of a BOINC
Desktop Grid via SOAP and not only for LWI consumption, but it is intended to provide a
general-purpose web services interface for BOINC.



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

9

BOINC doesn’t support the concept of task as we see in Legion, so it was necessary to
implement it in LWSB. We chose Python as the language to implement the LWSB component
because there are already several tools for BOINC written in that language.
The developed component allows the BOINC server to interact with LWI for adding and

authenticating users, to create tasks made up of smaller work units following the config.xml
specification, to post-process a task, to retrieve the status of tasks, to retrieve the result of tasks
when finished and canceling a task.

Figure 8. BOINC plus LWSB

In order to work with tasks, it was necessary to save some information about them. With this
in mind, a table named 'Task' was created inside the BOINC Project database scheme. This
table stores the information associated with the task: name, how many work units it has, the
current state which could be: creating, executing, canceled or finished; also, there are fields for
storing execution time, CPU time and consumed FLOPS which are obtained from the work
units as they are being completed. The way for relating work units inside a task is by using a
field named hash whose value is shared between work units in the 'batch' field of the table
'workunit'.
Furthermore, a set of libraries were developed for reading the config.xml file (Figure 4),

distributing the input files, and for creating the files required by BOINC: job.xml, work unit
templates, result templates. Also a custom Assimilator was developed in order to update the
fields in the table Task as work units were finished and in order to execute additional
operations such as result-files concatenation and/or compression. After the execution of the task
is finished, the Assimilator copies the result-files to a preconfigured folder and sends an email
alerting the operator. In case an error happens during execution of a work unit belonging to a
task, the Assimilator automatically cancels the task and alerts the operator with an email.

5.3. Centralized BOINC Servers Management
Legion Framework is also suitable for centralized BOINC Server management and thus
enabling multiuser remote task submission and monitoring for BOINC Projects. This might be
useful when several Intra-Organizational BOINC Desktop Grids are deployed and intended to
be managed within a centralized context. Given that the Grid resources are accessed via the



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

10

LWS tier it is feasible to enable several back-ends (BOINC Server plus LWSB Component)
which might be distributed within a country or bigger regions provided that adequate network
infrastructure exists. In order to dynamically manage execution nodes a companion account
manager system such as Jarifa [5] might be required. A proposed architecture is seen in Figure
9.

Figure 9. Centralized BOINC Management Architecture

6. Adapting Legion Framework to other Grid Management Systems

It is viable to adapt Legion Framework to work with other Grid Management Systems, for
instance Condor. As seen in section 4, the main modification that is needed in order to enable
the interaction with other Grid Management System is the development of a customized LWS
component for that system. As can be seen in Figure 10, each Legion project is related to a
LWS component; indeed, it could be the same LWS for many projects. This makes it possible
to enable a different backend for some of the projects registered in the system. The only action
required in LWI is to specify the web service address and credentials.
The SwA standard was supported by using the Soaplib library [11] which implements

WSDL 1.1 allowing attaching binary files.



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

11

Figure 10. LWS customization step in project creation

7. Future Work

We plan to continue the development of Legion Framework towards the integration with other
Grid Management Systems. A next step will be the integration with the Condor Project [12] a
major HTC platform.

8. Conclusions

In this paper we presented Legion Framework as a tool both for the side of the grid-admin and
for the end user. To sum up, we list the main achievements of the project:
a) Legion Framework successfully hides the complexity of a BOINC Desktop Grid with web

interfaces that let end users to stay focused on their core research/activities and reduce
simulations feedback cycle.
b) Legion Framework successfully reduces the administration time required to build a web

interface for managing BOINC.
c) Legion Web Interface, a key component of Legion Framework, can be easily adapted to

other Grid Management Systems.



Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

12

d) Legion Web Services for BOINC, also a key part of Legion Framework, will let
developers to benefit from having a BOINC backend for their custom applications.
e) Legion CLI for BOINC (both PHP and Java Version) will enable users to remotely send

tasks to a BOINC server.
f) Legion Framework is suitable for centralized BOINC Servers Management.
In particular, the time required for launching a web interface for computational intensive

projects was reduced from a few weeks to a few days.
The service is available at http://legion.pucp.edu.pe.

http://legion.pucp.edu.pe


Primera Conferencia de Directores de Tecnología Gestión de las TI en Ambientes Universitarios –
TICAL2011

Gestión de las TI en Ambientes Universitarios, Panamá, 20 y 21 de Junio de 2011
PONENCIAS

______________________________________________________________________________________

13

9. References

1. University of California at Berkeley. “BOINC - Berkeley Open Infrastructure for
Network Computing”. Available at: http://boinc.berkeley.edu

2. G. Rios, M. Iberico, O. Díaz. “Legion Grid Computing System ”. Proceedings of
the ULA, 2009, Venezuela.

3. Giorgino, Harvey, Fabritiis. Distributed computing as a virtual supercomputer: tools
to run and manage large-scale BOINC simulations. Dynamics, High Performance
Computing. Elsevier. 2010. pp. 1402-1409

4. Bruno Schulze, Workgroup Proposal: VCG - Virtual Community Grid, Rede
Nacional de Pesquisa e Ensino, 2006.

5. “Jarifa”. Project Page. Available at: https://github.com/teleyinex/jarifa/wiki
6. W3C. “SOAP Messages with Attachments”. Available at:

http://www.w3.org/TR/SOAP-attachments
7. The Apache Software Foundation. “Apache Axis 2”. Available at:

http://ws.apache.org/axis2/.
8. D.P. Anderson. “BOINC: A System for Public-Resource Computing and Storage”.

5th IEEE / ACM International Workshop on Grid Computing, Pittsburgh, PA. Nov.
8 2004 pp. 365-372.

9. University of California at Berkeley. “Virtual Campus Supercomputer Center”.
Available at:
http://boinc.berkeley.edu/trac/wiki/VirtualCampusSupercomputerCenter

10. University of California at Berkeley. “Assimilator”. Available at:
http://boinc.berkeley.edu/svn/branches/boinc_core_release_6_8/sched/assimilator.p
y

11. “Soaplib”. Readme. Available at: https://github.com/arskom/rpclib/tree/soaplib-
0.8.2

12. University of Wisconsin – Madison. “Condor Project”. Available at:
http://www.cs.wisc.edu/condor/

http://boinc.berkeley.edu/

	Legion:Anextensiblelightweightwebframeworkfo
	1.Introduction
	2.RelatedWork
	3.ExecutionontheGridbasedontasksandprojec
	4.Architecture
	4.1.LegionWebServices(LWS)
	4.2.LegionWebInterface(LWI)

	5.LegionWebServicesforBOINC(LWSB)
	5.1.BOINC
	5.2.DevelopmentofLWSB
	5.3.CentralizedBOINCServersManagement

	6.AdaptingLegionFrameworktootherGridManagem
	7.FutureWork
	8.Conclusions
	9.References


