ALICE Project DCI-ALA/ 169 / 068 ALICE2 DO1.6-17 Report on trial environment for circuit service testing /16

[image: image6.jpg]EUROPEAID

CO-OPERATION QFFICE

	[image: image1.jpg]EUROPEAID

CO-OPERATION QFFICE

	[image: image2.jpg]

	[image: image3.png]

	A project of the @LISII Programme
	This project is funded by the European Union
	A project implemented by CLARA

European Union’s

@LIS II Programme for Latin America

[image: image7.jpg]

[image: image4.jpg]Dalicez

América Latina Interconectada Con Europa

Periodical Progress Report

Report on trial environment for circuit service testing

	Document Full Name
	ALICE2 DO1.6-17 Report on trial environment for circuit service testing

	Date
	12/27/2011

	Activity
	1.6 Operation and Engineering activities

	Lead Partner
	RNP

	Document status
	Draft

	Classification Attribute
	Classified for Project Partners

	Document link
	

	Abstract: This document presents the circuit provisioning service trial. The document explains how the installation and testing of the service was carried out by the Network Engineering Group (NEG). The NEG testing shows the circuit creation using the Dragon software engine. This software is used by the OSCARS and AutoBAHN services of Internet2 and GEANT.

COPYRIGHT NOTICE

Copyright © Members of the ALICE2 Project, December 2011

ALICE2 (América Latina Interconectada con Europa 2 – Action Name: Extending and Strengthening RedCLARA as e-Infrastructure for Collaborative Research and Support to Development) is a project co-funded by the European Commission within the @LIS II Programme. ALICE2 began on 1st December 2008 and will run for 45 months.

For more information on ALICE2, its partners and contributors please see (after March 29th, 2009) http://alice2.redclara.net.

You are permitted to copy and distribute, for non-profit purposes, verbatim copies of this document containing this copyright notice. This includes the right to copy this document in whole or in part, but without modification, into other documents if you attach the following reference to the copied elements: “Copyright © Members of the ALICE2 Project, 2008. See http://alice2.redclara.net for details”.

Using this document in a way and/or for purposes not foreseen in the paragraph above, requires the prior written permission of the copyright holders.

The information contained in this document represents the views of the copyright holders as of the date such views were published.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED BY THE COPYRIGHT HOLDERS “AS IT IS” AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE MEMBERS OF THE ALICE2 COLLABORATION, INCLUDING THE COPYRIGHT HOLDERS, OR THE EUROPEAN COMMISSION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	DELIVERABLE ROUTE

	
	Name
	Member/Activity
	Date
	Responsible

	From
	Marco Teixeira
	CLARA NEG
	12/27/2011
	Marco Teixeira

	Revised by
	Gustavo Garcia
	CLARA Technical Manager
	12/29/2011
	Gustavo Garcia

	Approved by
	
	
	
	

	DOCUMENT DESCRIPTION

	Subject
	Date
	Comment
	Author

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	REGISTER OF CHANGES

	Subject
	Item
	Reason for Change

	
	
	

	
	
	

TABLE OF CONTENTS

2

COPYRIGHT NOTICE

3

DELIVERABLE ROUTE

3

DOCUMENT DESCRIPTION

3

REGISTER OF CHANGES

5

GLOSSARY

5

Introduction

5

1
About dynamic circuit provisioning

6

2
Circuit provisioning service implementation

6

3
Test network topology

7

3.1
Objectives

7

3.2
Used resources

7

3.3
Testing procedure

8

3.4
Testing results

9

4
Conclusions and recomendations

10

Annex A. VLSR configurations

14

Annex B. Switch configurations

15

Annex C. Tests

GLOSSARY

AutoBAHN: GEANT’s Automated Bandwidth Allocation across Heterogeneous Networks

IDC: Inter-domain controller

NEG: Network Engineering Group

OSCARS: ESnet On-Demand Secure Circuits and Advance Reservation System

VLSR: Virtual Level Switch Router

Introduction

This document describes how the trial environment for the phase 0 was set and it results.

About dynamic circuit provisioning

Dynamic Circuit Networks are used to create circuits of specific bandwidth between two endpoints. This virtual circuit can be created for a short duration of time or permanently. There is an expectation that this virtual circuit is more reliable and flexible in terms of bandwidth specification between source node and destination nodes in the network. Using this technology, scientists of projects like the Large Hadron Collider (LHC) and other projects that involve collaboration between researchers that are geographically distributed locations, can create short or long-term scheduled bandwidth connections over WAN backbones. Among the main advantages of a circuit service we can mention:

Circuits are dedicated paths with quality guarantees

On each circuit, customers can use any protocol besides TCP or UDP. The above means they can adopt specific protocols to better suit their needs.

No other communications will be on the same path, so it has also security advantages.

The creation of virtual circuits across different domains or Autonomous Systems requires coordination between them. A control plane software can be used in the domains to automate the creation and tear down of circuits, making it easier to coordination across domains, along with required authentication and authorization mechanisms. Projects such as AutoBAHN (GEANT), DRAGON (NSF) and OSCARS (ESnet) have developed their control planes for this purpose. The GLIF initiative is involved in the development of and inter-domain protocol in cooperation with various other research organizations.

Circuit provisioning service implementation

RedCLARA has defined a deployment path for the circuit provisioning service in RedCLARA’s network. The main goal is to achieve in 2012 a beta service for the Latin-American community, and take advantage of global initiatives in Europe and USA. The deployment of this kind of services is not a simple task. Due to this, RedCLARA has defined the following phases to the development:

PHASE-0 (Dec 2011): Deployment of a circuit provisioning testing environment

PHASE-I (Aug 2012): Implementation of the circuit provisioning service at RedCLARA’s backbone (operated by the NOC or NRENs’ representatives only).

PHASE-II (July 2013): Service implementation at NRENs’ level.

This document is a report of the phase 0. The phase 0 is the initial process for setting up the test environment, at this phase all resources were measured and the initial process of implementation was carried. As RedClara didn’t know how the suite of software’s would behave all the equipment used were out of the backbone. The NEG had to interact with other teams (RedCLARA’s and others) to set the test environment and after it was done the tests began.

Test network topology

The topology used is presented at the below picture and shows how the test environment was placed. As all the available resources were spread across RedCLARA infrastructure the NEG had to set up an environment using the production links to be able to reach the test switch. The two virtual machines were set by the SEG at the Brazilian POP.

[image: image5.png]2 Vinual Machines.

/' . VLSR +IDC

Test Switch

Objectives

Global:

Achieve that RedCLARA’s engineering get familiar with circuit provisioning technology for its future implementation.

RedCLARA’s backbone equipment (Catalyst 3750G) testing with the circuit provisioning framework.

Specific goals:

Set up the Virtual Label Switching Router (Dragon)

Set up de Inter Domain Controller (OSCARS)

Integrate the VLSR with the IDC

Create a virtual circuit using two ports of a single switch.

Used resources

One switch CISCO 3750E (WS-C3750E-24TD-SD)

Two Linux Debian virtual machines

Production links to have connectivity between the elements.

Testing procedure

Details of the testing configurations and procedures results are in the annex section. The main steps used for the testing were:

Setup Debian virtual machines (Carried out by the Systems Engineering Group “SEG”)

Install pre-requisite software (Bison, Flex, LibXml2, among others)

Install Dragon software in VSLR mode

Change Dragon’s configuration files (zebra.conf and dragon.conf)

Create Dragon Linux start-up files

Configure test switch (Catalyst 3750)

 Test creation of virtual circuit from Dragon

The main test was the creation of a virtual circuit from one interface to another at the same switch. As the IDC presented some errors this test was executed directly at the dragon console and the objective was to see how the software would place and remove the configurations at the switch. Details of the circuit creation test are in Annex C.

Testing results

After all the installation and testing, the general results of the tests were:

	Objective
	Status

	Set up the VLSR
	Complete

	Set up de IDC
	Partially

	Integrate the VLSR and IDC
	Partially

	Create a Virtual circuit
	Complete

Set up the VLSR

The Virtual Label Switch Router (VLSR) (Dragon) was set using a virtual machine and all the configurations were done. The software is working as expected and more tweaks will be needed when the topology changes.

Set up the IDC

The IDC (Oscars) was set using a virtual machine and all the configurations were done. It’s already possible to see the login screen, but for some reason the NEG was unable to create a domain. The NEG is still working with the cooperation of some RNP members to identify and correct this error.

Integrate the VLSR and IDC

Both software’s are already installed but as the IDC presented some errors the integration had to be postponed to a second moment. As soon as the IDC errors get solved the integration will proceed and the creation of the circuits will be made using the suite OSCARS+Dragon.

Create a Virtual circuit.

The creation of a virtual circuit was completed using just the Dragon software. The switch received the configurations and was able to create the virtual circuit. For some reason the QOS configuration was not applied. The NEG is still working at this issue and as soon as is cleared a new test will be done.

 Conclusions and recomendations

The NEG has completed the implementation process for phase 0 trial. The testing achieved the main goals of the testing:

The RedCLARA’s NEG got familiar with the installation of the tools and elements for the service.

The interface for the Catalyst 3750 switches was tested with activation and de-activation of a circuit. This is a big advance for RedCLARA’s backbone implementation due to Dragon is the main interface element between network and control planes like OSCARS and Autobahn.

 The RedCLARA’s NEG will continue working to solve the lack of QOS and IDC domain problem found on the initial tests. After these issues have been solved a second test at phase 0 will be done and a new report generated.

Afterwards the phase 0 will continue and one more switch 3750 will be needed. The purpose of this second test is to see how the suite will handle working with trunk interfaces.

Annex A. VLSR configurations

To set up the VLSR the NEG requested a virtual machine at the network with the following specifications:

S.O: Debian Squezee 6

Tipo de Instalação: netinst

Sistema: x86

2 GB Hard Disk
 256 MB RAM

1 Virtual processor

After the installation of the S.O was done the NEG started the configurations of the VLSR.

To implement the VLSR the following steps were taken :

1 – Installing the prerequisites:

aptitude install -y bison flex libxml2-dev git subversion make autoconf automake ssh g++ libsnmp-dev rcconf vlan bridge-utils psmisc telnet unzip

2 - Download the DRAGON software from the RNP repository:

cd ~/

 svn co https://svn.rnp.br/repos/redeh/dragon/dragon-sw/

3 – Installing the Dragon in VLSR mode

cd ~/dragon-sw
Inside of the folder dragon-sw execute the command:

sh do_build.sh vlsr-cat3750-qos # (Cisco 3570e)

This command will start the installation process of composing software DRAGON (dragon, kom-rsvp and zebra), during the installation process there will be questions about the type of access to the switch as shown below:

CLI Access:

*** Setting CLI Session Type:

With the --enable-switch-cli-access option, you also need to specify the CLI session type as either 'telnet', 'ssh', 'tl1' or 'shell'.

 This can also be specified by --with-switch-cli-type=(telnet|ssh|tl1|shell)

 CLI Session Type (Default: none): telnet

User and Password to access CLI:

*** Setting username and password to access switch via CLI:

 With the --enable-switch-cli-access option,

 you need to provide the username and password.

 Username (Default: unknown): dragon

 Password (Default: unknown):
4 - After the build process use the following command to install the dragon, remembering that the default folder for installation of the binaries is /usr/local /dragon:

sh do_install.sh

5 – Configuring the files zebra.conf and dragon.conf

* Editing the file /usr/local/dragon/etc/dragon.conf:

! -*- dragon -*-

!

! DRAGON configuration file

!

hostname vlsr

password dragon

! Portas para ligaÃ§Ã£o dos clientes

set local-id port 1/0/17

set local-id port 1/0/18
* Editing the file /usr/local/dragon/etc/zebra.conf:

! -*- zebra -*-

!

! zebra configuration file

!

! $Id: zebra.conf

!

hostname vlsr

password dragon

enable password dragon

!

! Interface's description.

!

interface lo

!

interface eth0

!

!

line vty

log file /var/log/dragon/zebra.log

6- Setting the DRAGON service active every boot.

-must create a startup file in / etc / init.d:

cd /etc/init.d/

touch dragon

vim dragon
- Put the contents below on the dragon file:

#! /bin/sh

BEGIN INIT INFO

Provides: dragon

Required-Start: $network $remote_fs $syslog

Required-Stop: $network $remote_fs $syslog

Default-Start: 2 3 4 5

Default-Stop: 0 1 6

Short-Description: Start daemon at boot time

Description: Enable dragon service as daemon.

END INIT INFO

\##

DRAGON_START=/usr/local/dragon/bin/dragon.sh

Some things that run always

touch /var/lock/dragon

Carry out specific functions when asked to by the system

case "$1" in

 start)

 echo "Starting DRAGON Service"

 $DRAGON_START start-vlsr

 ;;

 stop)

 echo "Stopping DRAGON Service"

 $DRAGON_START stop

 ;;

 *)

 echo "Usage: /etc/init.d/dragon.sh {start|stop}"

 exit 1

 ;;

esac

exit 0

Annex B. Switch configurations

Configuring the remote user access:

Switch# username dragon password 0 dragon
Switch# aaa new-model
Switch# aaa authentication login default local
Switch# line vty 0 4
Switch# login authentication default

Configuring port address management:

Switch# configure terminal
Switch# interface fastEthernet0/1
Switch# ip address endereço_ip mascara
Switch# no shutdown

Configuring an SNMP Community:

Switch#configure terminal
Switch(config)#snmp-server community dragon RW
Swithc(config)#exit
Router(config)#write memory

Annex C. Tests

The process used to create and remove the virtual circuit was :

To create a circuit the following commands were used:

vlsr> edit lsp <nome>

vlsr(edit-lsp-<nome>)> set source ip-address <ip_vlsr1> port <nr_porta> destination ip-address <ip_vlsr2> port <nr_porta>

vlsr(edit-lsp-<nome>)> set bandwidth eth100M swcap l2sc encoding ethernet gpid ethernet

vlsr(edit-lsp-<nome>)> set vtag <nr_vlan>

vlsr(edit-lsp-<nome>)> exit

vlsr> commit lsp <nome>

After the creation a SHOW LSP was used and displayed the status:

vlsr> show lsp

 LSP status summary

Name Status Dir Source (IP/LSP ID) Destination (IP/Tunnel ID)

--

teste2 In service <=> 200.0.206.99 200.0.206.99

 4113 4114

To see more informations of the circuit the SHOW LSP TESTE2 was used:

vlsr> show lsp teste2

Src 200.0.206.99/4113, dest 200.0.206.99/4114

Generic TSPEC R=eth100M, B=eth100M, P=eth100M, m=100, M=1500

Encoding ethernet, Switching l2sc, G-Pid ethernet

Ingress Local ID Type: single port, Value: 4113

Egress Local ID Type: single port, Value: 4114.

E2E LSP VLAN Tag: 715.

Status: In service

To remove the LSP the command DELETE LSP was used:

vlsr> delete lsp teste2

After that another SHOW LSP was issued to confirm if the circuit was deleted:

vlsr> show lsp

 LSP status summary

Name Status Dir Source (IP/LSP ID) Destination (IP/Tunnel ID)

During the tests all information was monitored at the switche and the configuration were done and removed successfully.

One point that was observed was that no QOS configurations were applied by the system.

ALICE2 DO1.6-17 Report on Trial Environment for Circuit Service Testing

26
	[image: image9.png]

	[image: image7.jpg]
	[image: image8.jpg]

	A project of the @LISII Programme
	This project is funded by the European Union
	A project implemented by CLARA

[image: image8.jpg][image: image9.png]